Modeling Neutralization in Exemplar Theory

Jonathan C. Paramore

jcparamo@ucsc.edu

Annual Meeting on Phonology (AMP) September 25th, 2025

What is Neutralization?

- ► When a phonological contrast in a language is lost in certain contexts.
- ► Example cases of neutralization:
 - Obstruent Voicing in Russian (Matsui, 2015)
 - Vowel length in Japanese (Braver, 2019)
 - Vowel nasality in Mankiyali (Paramore, 2025)
 - Manner of articulation in Korean (Kim & Jongman, 1996).
- The phonetic realization of phonological neutralization can be complete or incomplete.

Phonetically Incomplete Neutralization

► Residual phonetic traces of the underlying phonological contrast persist in the acoustic record.

```
i. /ki-mo/ \rightarrow [kimo] tree-PART \mu duration of [i]: 50 ms
ii. /ki!/ \rightarrow [kir] key \mu duration of [ir]: 157 ms
iii. /ki/ \rightarrow [kir] tree \mu duration of [ir]: 125 ms
```

Table 1: Vowel Lengthening in Japanese. (Braver, 2019)

Introduction 000000

Phonetically Complete Neutralization

No measurable surface differences in the neutralized contrast.

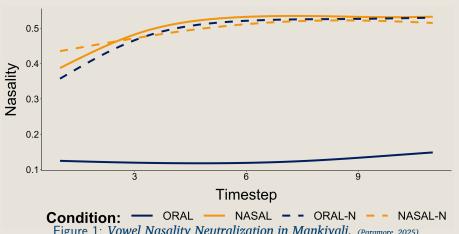


Figure 1: Vowel Nasality Neutralization in Mankiyali. (Paramore, 2025)

This Paper

► Research Question:

– Within an eliminativist exemplar-theoretic framework, is it predicted that we should observe both types of neutralization?

► Computational model of exemplar accumulations:

- Naturally predicts either incomplete or complete neutralization.
- Barring unnatural token frequency effects, both types of neutralization are difficult to generate.

jcparamo@ucsc.edu 5 / 25

What is Exemplar Theory?

- ► A cluster of theories with the common view that language use is the main driver of linguistic cognition (Bybee, 2001; Goldinger, 1998;
 - Goldrick & Cole, 2023; Johnson, 1996, 2006; Kaplan, 2015; Nosofsky, 1986; Pierrehumbert, 2001, 2016).
- ► The assumptions followed here are based closely on Bybee (2001), Pierrehumbert (2001), and Kaplan (2015).

- 1. Speech representations are networks of phonetically rich memories/exemplars formed through use (Bybee, 2023, p.14-15).
- **2.** Grammar *emerges* with repeated use and is not separate from lexical representations (Bybee, 2001, p.3, 26–27).
- **3.** Semantically or phonetically *similar* exemplars are strongly linked in memory and influence one another (Bybee, 2001, p.21-23).
 - The base member of a paradigm asymmetrically influences other forms (Albright, 2002; Kaplan, 2015).
- **4.** Token *frequency* impacts representation. More frequent exemplars are strengthened in memory (Bybee, 1985, p.119-123).
- **5.** Production biases can shift exemplar categories over time

(Pierrehumbert, 2001, p.146-148).

jcparamo@ucsc.edu 7 / 25

Modeling Neutralization

- ► *Model Overview*: Simulation of vowel nasality neutralization over time for an individual speaker.
- ► Model components:
 - input: four categories consisting of lexical items with pre-specified frequencies.
 - exemplar accumulation: iteratively creates new optimized exemplars based on eliminativist exemplar principles.
 - output: plot showing evolution of the four categories' nasality values over 1,000 iterations.

Model Input

- ► Four categories with two lexical items each.
 - 1. **ORAL**: [taa], [kii]
 - 2. **NASAL:** [tãã], [kĩĩ]
 - 3. **ORAL-N**: [taa-n], [kii-n]
 - 4. **NASAL-N**: [tãã-n], [kĩĩ-n]
- ► Each lexical item seeded with a single exemplar.
 - Content corresponds to vowel nasality
 - Nasality of ORAL and ORAL-N vowels ~ 0.2 (sd = .015)
 - Nasality of NASAL and NASAL-N vowels ~ 0.6 (sd = .015)
- ► Frequencies of each category in relation to other categories.

◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶ ◆□ ▶

Exemplar Accumulation

10 / 25

Step 1: selection

Randomly select 1 of the 8 lexical items

Step 2: entrenchment

Set nasality to mean of item's cloud

Step 3: optimization

Optimize nasality based on examplar biases

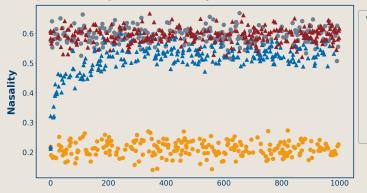
Step 4: noise

Add random noise to the nasality value

Step 5: storage

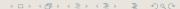
Store the new exemplar

- 1. pre-N production bias: 5 x (NASAL taa-n)2
- 2. morphological bias: FREQ x (ORAL taa-n)2 taa-n = .275


taa-n: [.18, .22,

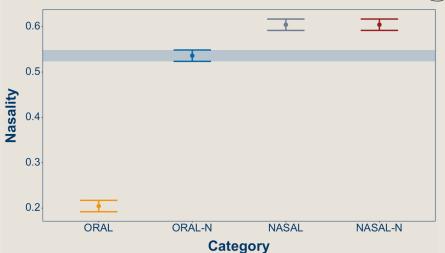
《日》《部》《意》《草》

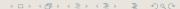
Modeling Incomplete Neutralization


Exemplar Changes in Nasality Over Time, Simulation 1

words (μ nas.)

- taa (0.21)
- kii (0.22)
- tãã (0.6)
- kîi (0.58)
- × KII (0.50
- ▲ taa-n (0.53)
- ▲ kii-n (0.54)
- ▲ tãã-n (0.6)
- kîi-n (0.59)

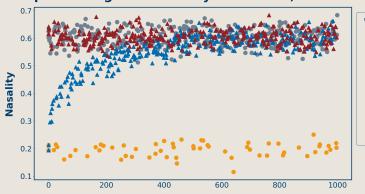

Exemplar Production Iteration



jcparamo@ucsc.edu $11 \, /$

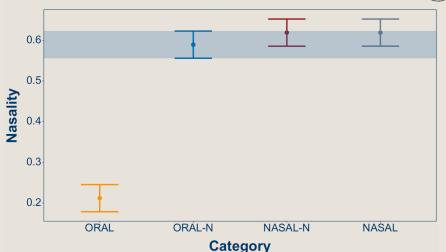
Estimates over 100 Simulations




- ► Lowering the token frequency of base ORAL forms.
 - Morphological similarity becomes increasingly less important.
 - Only requires changes to the exemplar space.

$$FREQ \times (BASE - exemplar)^2$$

Exemplar Changes in Nasality Over Time, Simulation 1



words (μ nas.)

- taa (0.2)
- kii (0.2)
- tãã (0.58)
- kîi (0.63)
- taa-n (0.59)
- kii-n (0.6)
- tãã-n (0.6)
- kîi-n (0.61)

Exemplar Production Iteration

jcparamo@ucsc.edu 15 /

- ► Manipulating base token frequency may not be empirically justified.
 - Not likely that BASE forms are systematically less frequent than paradigmatically related forms in a language.
- ▶ One (potentially) questionable prediction of this approach:
 - All languages that exhibit complete neutralization have relatively low-frequency BASE forms.
 - All languages that exhibit incomplete neutralization have relatively high-frequency BASE forms.

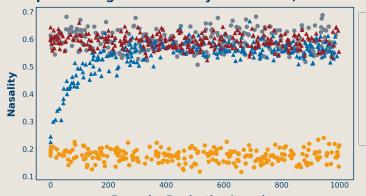
16 / 25

Modeling Complete Neutralization

► My Proposal:

- Variation in planned output targets leads to distinct neutralization patterns.
- Coarticulatory reanalysis leads a speaker to change the *planned* degree of nasality on ORAL-N forms (Beddor, 2009; Ohala, 1993).
- Can be implemented by changing the scalar of the pre-N nasality production bias.

$$5 \times (NASAL - exemplar)^2$$



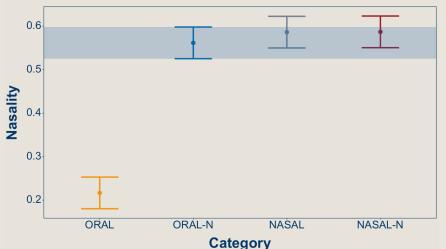
jcparamo@ucsc.edu 17 / 2

Nasality Bias: $15 \times (NASAL - exemplar)^2$

Exemplar Changes in Nasality Over Time, Simulation 1

words (μ nas.)

- taa(0.17)
- kii (0.18)
- tãã (0.63)
- kîi (0.56)
- taa-n (0.57)
- kii-n (0.56)
- tãã-n (0.6)
- kîi-n (0.58)


Exemplar Production Iteration

jcparamo@ucsc.edu 18 / 25

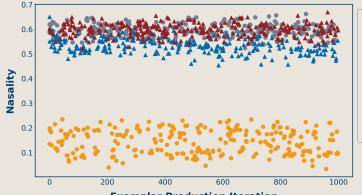
Nasality Bias: $15 \times (NASAL - exemplar)^2$



◆ロ > ◆ 個 > ◆ 差 > ◆ 差 > り < ②</p>

Discussion

- ▶ Barring unnatural frequency effects, changes in exemplar patterns struggle to capture both types of neutralization.
- Analyzing variation as differences in planned target outputs provides a possible solution.
 - This requires planned linguistic knowledge.
 - Changes in exemplar values alone do not change the endpoint of optimization.



Nasality Bias: $\mathbf{5} \times (NASAL - exemplar)^2$

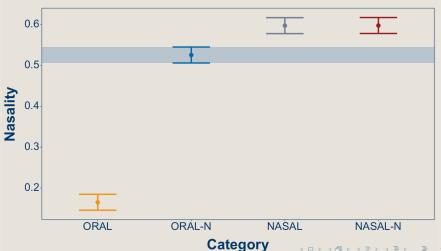
▶ tag-n and kii-n initialized at 0.6

Exemplar Changes in Nasality Over Time, Simulation 1

words (μ nas.)

- taa (0.1)
- kii (0.18)
 - tãã (0.59)
- kîi (0.6)
- taa-n (0.52)
- ▲ kii-n (0.53)
- ▲ tãã-n (0.6)
- ▲ kĩi-n (0.6)

Exemplar Production Iteration



jcparamo@ucsc.edu 21 /

Nasality Bias: $\mathbf{5} \times (NASAL - exemplar)^2$

► taa-n and kii-n initialized at 0.6

jcparamo@ucsc.edu 22 /

Future Directions

- ► The model presented here only considers production exemplars.
 - It's well-known that production and perception are linked and both play roles in shaping the lexicon.
 - Future updates to the model should incorporate perception exemplars (Beddor et al., 2018).
- ► The model weights all exemplars equally.
 - Social status, recency, etc. may result in certain exemplars having a stronger influence than others on future productions.

4 D > 4 A D > 4 B > 4 B > 9 Q P

References I

- Albright, Adam C. (2002). The identification of bases in morphological paradigms (Doctoral dissertation). UCLA.
- Beddor, Patrice Speeter. (2009). A coarticulatory path to sound change. Language, 85(4), 785-821.
- Beddor, Patrice Speeter, Coetzee, Andries W. Styler, Will, McGowan, Kevin B. & Boland, Julie E. (2018). The time course of individuals' perception of coarticulatory information is linked to their production: Implications for sound change. *Language*, 94(4), 931–968.
- Braver, Aaron. (2019). Modelling incomplete neutralisation with weighted phonetic constraints. *Phonology*, *36*, 1–36.
- Bybee, Joan. (1985). Morphology: A study of the relation between meaning and form. Philadelphia, PA: John Benjamins.
- Bybee, Joan. (2001). Phonology and language use. Cambridge: Cambridge University Press.
- Bybee, Joan. (2023). What is usage-based linguistics? In Manuel Diaz-Campos & Sonia Balasch (Eds.). John Wiley & Sons, inc.
- Goldinger, Stephen D. (1998). Echoes of echoes? an episodic theory of lexical access. Psychological Review, 105(2), 251-279.
- Goldrick, Matthew, & Cole, Jennifer. (2023). Advancement of phonetics in the 21st century: Exemplar models of speech production. *Journal of Phonetics*, 99.
- Johnson, Keith. (1996). Speech perception without speaker normalization. In Keith Johnson & John W. Mullennix (Eds.), Talker variability in speech processing. Academic Press.
- Johnson, Keith. (2006). Resonance in exemplar-based lexicon: The emergence of social identity and phonology. Journal of Phonetics, 34, 485–499.

jcparamo@ucsc.edu 24 / 25

References II

- Kaplan, Abby. (2015). Positional neutralization in an exemplar model: The role of unique inflectional bases. Proceedings of the 2014 Annual Meeting on Phonology.
- Kim, Hyunsoon, & Jongman, Allard. (1996). Acoustic and perceptual evidence for complete neutralization of manner of articulation in Korean. Journal of Phonetics, 24, 295–312.
- Matsui, Mayuki. (2015). Roshia-go ni okeru yuusei-sei no tairitsu to tairitsu no jyakka: Onkyo to chikaku (Doctoral dissertation) [Voicing contrast and contrast reduction in Russian: acoustics and perception]. Hiroshima University.
- Nosofsky, Robert M. (1986). Attention, similarity, and the identification-categorization relationship. *Journal of Experimental Psychology: General*, 115, 39–57.
- Ohala, John J. (1993). Coarticulation and phonology. Language and Speech, 36(2-3), 155-170.
- Paramore, Jonathan Charles. (2025). Phonetically complete neutralization in Mankiyali [Talk at Formal Approaches to South Asian Languages (UT Austin)].
- Pierrehumbert, Janet B. (2001). Exemplar dynamics: Word frequency, lenition and contrast. In Joan Bybee & Paul Hopper (Eds.), Frequency and the emergence of linguistic structure (pp. 137–157). Amsterdam: John Benjamins.
- Pierrehumbert, Janet B. (2016). Phonological representation: Beyond abstract versus episodic. *Annual Review of Linguistics*, 2, 33–52.

◆□ ▶ ◆□ ▶ ◆■ ▶ ● ◆○○

jcparamo@ucsc.edu 25 / 25